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Abstract— In the field of loop closure detection, the most
conventional approach is based on the Bag-of-Visual-Words
(BoVW) image representation. Although well-established, this
model rejects the spatial information regarding the local feature
points’ layout and performs the associations based only on
their similarities. In this paper we propose a novel BoVW-
based technique which additionally incorporates the operational
environment’s structure into the description, treating bunches
of visual words with similar optical flow measurements as single
similarity votes. The presented experimental results prove that
our method offers superior loop closure detection accuracy
while still ensuring real-time performance, even in the case
of a low power consuming mobile device.

I. INTRODUCTION

A conditio sine qua non for a modern autonomous robotic
system is the functionality of Simultaneous Localization
and Mapping (SLAM). A standard SLAM algorithm usu-
ally entails a localization engine, capable of estimating the
position of a given robot, and a mapping engine responsible
for maintaining the environment’s representation. These two
engines are interdependent, with their outputs formulating
a pose-graph representation of the explored world. In order
to produce more accurate results, a loop closure detection
mechanism is usually incorporated into the system that
creates new edge constraints between revisited pose nodes
[1], [2], [3]. These additional constraints can be used in an
on-line [4] or post-processing [5], [6] manner, in order to
further improve the overall estimation using a cost function
minimization technique, e.g. Bundle Adjustment (BA) [7].

Due to loop closure’s effectiveness over the SLAM proce-
dure, a variety of techniques has been introduced in recent
literature, each of which addresses the task in a different
approach. According to the work described in [8], all the
proposed methods can be classified into three main categories
based on the associated elements’ nature. The techniques
laying into the first category seek for similarities between
the local sub-maps created from each pose in order to
create additional edge-constrains. On the contrary, methods
that fall into the second category attempt to create links
between poses by associating the corresponding images to
the overall generated map. Finally, the last category includes
appearance-based loop closure detection techniques that aim
to create edges based on the image similarities themselves,
providing better scaling for long trajectories cases [8]. As
part of the last category, the Bag of Visual Words (BoVWs)
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Fig. 1: Loop closure detection using SVHVs on the Bicocca
2009-02-25b [9] dataset. The proposed matching scheme
produces more consistent VW associations due to the addi-
tional information of the observed environment’s structure.

model has been successfully applied in a wide variety of
robotic vision applications, offering excel accuracy, as well
as computational and memory management performances.
The BoVW model addresses the description as a bottom-
up procedure by quantizing the detected local features’
descriptor space and forming a histogram of occurrences.
While this description is very appealing for real-time ap-
plications, it rejects the spatial arrangement information of
the detected local feature points and considers only their
individual classes.

In the typical case, each image is transformed into a
BoVW histogram representation of reduced dimensionality,
with images that correspond to a common map location tend-
ing to produce high similarity metrics (e.g. L2/L1-scores).
Many loop closure detection techniques [10], [4], [11], [12]
integrate a geometrical verification step as a back-end pro-
cedure for rejecting potential false-positive matches that the
BoVW model may produce. Such geometrical verification
tests are mainly based on the calculation of a computationally
expensive image or camera transformation between the as-
sociated poses (e.g. 8-point RANSAC), increasing the com-
putational burden and limiting the real-time performance.

The proposed research realizes a novel image description
and matching scheme that advances the VW’s matches with
consistent spatial displacement. Using additional informa-
tion derived from the normal sequential acquisition of the
image stream in an autonomous robotic system, we are



able to treat each camera measurement as an aggregation
of Structure-Aware Viewpoint-Invariant High-Order Visual-
Words (SVHVs) rather than individual Visual-Words (VWs).
By SVHV we denote a bunch of VWs that produce similar
displacement (optical flow) vectors, in terms of magnitude
and orientation, when observed by two consecutively ac-
quired images, and hence they are typically originated from
the same surface in a particular depth. The nature of our
approach incorporates the environment’s structure into the
description while still preserving the essential rotation and
scale invariance properties. Thus, the computationally expen-
sive geometrical verification steps are avoided, allowing for a
real-time loop closure detection system to be developed even
for the case of a low-power mobile device. An operational
example of the proposed SVHV-based technique is illustrated
in Fig. 1.

The rest of this paper is organized with the following
structure: Section II discusses the recent literature on loop
closure detection. In Section III, the proposed methodology
for describing and matching the input images is analytically
explained. The implementation details for achieving a real-
time mobile application are outlined in section IV. The
proposed system’s performance, in terms of accuracy and ex-
ecution time, is presented in Section V, while subsequently,
comparative results against other state-of-the-art approaches
are shown. Finally, Section VI provides the author’s con-
clusions and future work regarding further extensions and
applications of the proposed technique.

II. RELATED WORK

One of the first techniques that introduced the BoVW
model into the image recognition problem was described by
Sivic and Zisserman [13]. According to them, a visual vo-
cabulary of SIFT-derived words was created using k-means
clustering. Then, each image was converted into a description
vector/histogram containing each term’s frequency of occur-
rence, through the “Term Frequency – Inverse Document Fre-
quency” (TF–IDF) weighting scheme. Consequently, similar
frames were identified by using a cosine distance metric.
In a later work, Nister and Stewenius [14] proposed an
alternative storage representation of the visual vocabulary
based on a tree structure offering a more computationally
efficient feature-to-visual-word conversion.

In order to take advantage of the overall operational
environment of a loop closure detection system, the FAB-
MAP algorithm [15] and its sparsely approximated extension
FAB-MAP 2.0 [16] were based on a Chow Liu tree that
captured the dependencies between multiple VWs’ appear-
ances. Although both techniques stimulated interest for a
plethora of later methodologies, it has been reported [17]
that their achieved performance may be reduced in cases of
trajectories with repetitive visual patterns since no geomet-
rical information was retained between the feature points. In
another representative work, Angeli et al. [18] encoded the
image description with two distinct visual vocabularies (one
based on SIFT descriptors [19] and one on color histograms),
while the loop closure detection performance was enhanced

by taking into account the matching probability of the
previously obtained frames in a Bayesian filtering scheme.

With the aim to provide efficient calculations, more recent
techniques have deviated from the above probabilistic loop
closure detection frameworks. More precisely, the image
matching information and the information derived from the
acquired map are exploited by two discrete and subsequent
steps. Gálvez-López and Tardós in [10] proposed a loop
closure detection system based on the binary description
of BRIEF [20] features. To enhance image matches that
persist over time, pairs of images were considered as loop
closing camera measurements only if they were supported by
groups of temporally-consistent and highly-similar frames.
In a later work, Mur-Artal and Tardós [21] added further
rotation and scale invariance to the above algorithm by using
the description of ORB [22] features in a real-time key-frame
SLAM system. Aiming to cope with the absence of the local
features’ spatial arrangement, both of the aforementioned
techniques applied a geometrical verification test, based on
the evaluation of a valid camera transformation, as a post-
processing step that burdened the computational frequency
in the false positive cases. On the contrary, our method in-
corporates a quantitative interpretation of the aforementioned
geometrical test into the VWs matching procedure, allowing
for the calculation of camera transformations only for the
purposes of SLAM in true loop closing cases.

Recently, a wide variety of techniques has been reported
in the related literature that aims to address the task of
visual place recognition under extreme lighting and/or envi-
ronmental differences (different periods during the day/year).
Many of those methods deviate from the BoVW model due
to the local features’ inability to be detected and matched
under such different conditions [23]. Instead, methods like
the ones presented by Milford and Wyeth [24] or Arroyo et
al. [25] concluded into a global image description, sacrificing
some of the viewpoint invariance, to gain robustness over the
potential appearance changes. Another family of techniques
that offer robustness over the environmental changes is the
one based on the classification power of Convolution Neural
Networks (CNNs) [26], [27], [28], [29]. Although CNN-
based techniques are considered as state-of-the-art in retrieval
and place recognition tasks, they are still disconnected from
the overall SLAM and loop closure detection problems. As
pointed out by Fei et al. [30] and Sizikova et al. [31], the
CNNs’ compositionality property, the lack of topological
information at the higher networks levels, as well as their re-
liance over viewpoint-independent surface appearances make
them suboptimal for loop closure detection approaches. To
cope with the environmental changes’ effect, the proposed
BoVW-based method can be efficiently combined with an
illumination invariant image representation technique, e.g.
[32], [33], though such an application is beyond the scope
of this paper and thus it is not further discussed.

III. PROPOSED METHOD

In this section our loop closure detection approach is
described. The proposed system can be divided into off-line



procedures (required for training) and on-line ones operating
while the robot’s trajectory escalates. Our first step is to
train a visual vocabulary in order to quantize the descriptor
space and reduce the matching procedure’s computational
complexity. During the on-line algorithm execution, we take
advantage of the sequential acquisition of the input image
stream and we calculate the spatial displacement of every
detected local feature point. Using an agglomerative cluster-
ing technique, the obtained VWs are grouped into clusters
based on their displacement domain forming the SVHV
groups. In such way, image matches are detected when their
corresponding VWs form a sufficient number of co-occurring
SVHVs. Finally, a temporal consistency filter kernel, the
coefficients of which were trained off-line, is applied to
the similarity metrics of neighboring camera measurements,
advancing the scores of images that persist over time.

A. Off-line Visual Vocabulary Training

Aiming at calculation efficiency, a tree structured visual
vocabulary is adopted based on the scale and rotation in-
variance of ORB features. To that end, a sample of training
descriptors from the Bovisa 2008-09-01 [9] dataset was cre-
ated and used as input to a k-medians hierarchical clustering
based on Hamming distance and k-means++ [34] seeding.
Thus, the descriptor space was quantized into a total of
W = 106 VWs (wi, i ∈ [1,W ]) with a vocabulary tree of
L = 6 levels and B = 10 branches per level. In order to
provide further robustness into the description, we adopt the
TF–IDF model and additionally retain the values ND

i and
ND corresponding to the number of the i-th VW occurrences
and the total number of words occurrences in the whole
training dataset, respectively. Thus, an IDF weight can be
obtained for every wi using the formula:

idf (wi) = log
(
logND/ND

i

)
. (1)

B. Creating SVHVs with Rotation and Scale Invariance

Given a pre-trained visual vocabulary, the first on-line step
of the proposed approach refers to the SVHV-based image
description. An SVHV of order O refers to an aggregation
of O VWs that are typically derived from the same entity
in the observed scene. A possible match between SVHVs
implies that the scene does not only contain common features
but also common objects, since different VWs and different
VWs’ layouts both produce distinguishable SVHVs. Figure
2 graphically illustrates the overall procedure for producing
SVHVs groups.

Probably the most intuitive approach for grouping the
local feature points into SVHVs would be to try to identify
neighboring VWs from each input frame. Although straight-
forward, this approach fails to associate the feature points
that are originated from a common entity since it only
considers a 2D projection (image plane) of the actual 3D
environment. A simple example can be considered where two
objects are captured as close to each other, thus producing
neighboring feature points, but are actually located in differ-
ent depths. Another common technique for identifying high-
order features is based on calculating the spatial displacement

ORB MatchesInput Image It

Input Image It-1

(a) ORB feature matches between consecutively observed images
(It and It−1) determining offset vectors.
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(b) Feature clustering
in the offset space. (c) Produced SVHV groups.

Fig. 2: The proposed procedure of clustering VWs with com-
mon offset vectors and producing SVHV groups. Different
clusters are notated with different coloring and markers.

between the query (Iq) and the database (Id) images’ feature
points [35], [36], [37], [38]. According to that, the local
features detected on Iq and each Id are converted into their
BoVW representations and matched with each other creating
point-to-point associations. By quantizing the degrees of
freedom of a particular linear image transformation, the
produced point-to-point displacements are grouped based on
the quantization bin they belong to. Those groups formulate
the high-order features for each image pair, though the
clustering results can significantly vary according to the
observations’ viewpoint changes. This is owed to the fact
that a scene’s projection on two different camera planes can
only be precisely described by a perspective transformation
of known camera’s ego-motion. As an example, observing
the same scene, of varying depth, by different camera-
angles may result into feature points assigned to various
quantization bins of the linear transformation, even though
they were originated from the same object.

In contrast with the aforementioned technique, that firstly
matches the feature points between query and database
images and then creates the groups of VWs, here we take
advantage of the sequential frame acquisition in a loop
closure detection system and we follow an inverted approach.
Our goal is to produce a structure-aware and viewpoint-
invariant description by creating the required SVHVs through
the means of optical flow. More particularly, we assume



that between consecutive frames any rotation effect can be
considered negligible, while the only aspect affecting the
feature points’ displacement is the structure of the observed
world.

At a time instance t, the most prominent ORB features
are extracted from the current image It, converted into VWs
and matched with the ones of the previously grabbed It−1,
as shown in Fig. 2a. In order to limit the local feature point
detection in the center of each image, typically corresponding
to small and noisy parallax information, we divide each It
into blocks and restrict the detector to preserve a uniform
feature point distribution [4]. Then, the spatial offset between
each pair of matched features is calculated forming a set
of displacement vectors <u, v>, with u and v referring
to the displacement over the vertical and horizontal image
axis, respectively. Then, the It SVHV groups are formu-
lated based on a statistical clustering technique to provide
further tolerance over possible feature layouts. Toward this
end, the dynamical nature of the agglomerative hierarchical
clustering “Weighted Pair Group Method with Arithmetic
mean” (WPGMA) [39] is exploited. The WPGMA algorithm
continuously clusters pairs of data that present the smallest
distance dmin = (da + db)/2 (with da and db being the
distance of cluster a and b from a previous hierarchical level,
respectively) until the point where one cluster is left, forming
a tree structure. At each tree node (clustering level) n, we
calculate an inconsistency coefficient:

cn =
dn −mn

σn
, (2)

where mn and σn denote the mean and standard deviation,
respectively, between distances dn, dn1 and dn2, with n1 and
n2 referring to the children-nodes of clustering level n. Thus,
the n1 and n2 nodes of each parent-node with cn > thc
are considered to contain two discrete clusters of VWs each
corresponding to a group of SVHVs, with thc being the
inconsistency threshold value. The interpretation behind the
above inconsistency check is to separate the clusters whose
parent-node deviation is greater than thc times the branch’s
standard deviation. The calculated spatial offset can not be
further used as a descriptive information for each cluster
between different traversals of the same area, since it is
subject to the camera’s ego-motion. On the contrary, it is
only computed to separate the VWs of a single image into
bunches, based on the scene’s structure. Figures 2b and 2c
depict the results of a representative offset space clustering
together with the corresponding SVHV groups.

Finally, in order to efficiently match the SVHVs in
the following steps, an alternative description represen-
tation is adopted. For each SVHV group in image It,
we retain the multiset of its VW-members’ indexes as
Gk = {wi1, wi2, wi3, ...}. A list of the occurring Gk

multisets is then assigned to image It with the form of
Lt = < Gk1, Gk2, Gk3, ... >.

C. Computing the Similarity
As mentioned before, a typical approach for matching

two images I1 and I2, under the TF–IDF model, is to

produce their corresponding description histograms (V (I1)
and V (I2)) and then measure their similarity. The ranking
technique utilized in this paper is based on the cosine
similarity, which is defined as:

Csim (I1, I2) =
V (I1) · V (I2)

‖V (I1)‖‖V (I2)‖
. (3)

The cosine similarity produces the same ranking results
with the Euclidean distance when applied to L2-normalized
description histograms.

The clustering output of the previously described proce-
dure can significantly vary according to the detected features’
number, layout, as well as their ability to be matched between
consecutive frames. Thus, matching between SVHVs is not
straightforward. To that end, we make use of the already
formulated clusters from the database images and reverse-
engineer the VW groups at query time. More specifically,
for each newly observed query image Iq , we check against
every database element Id, d ∈ [0, t− tw]1 for possible
loop closing pairs. The procedure for calculating the Csim

using the SVHV-based description can be achieved by the
following steps:

1) For each VW wx in Iq and Gy in Ld, we find the
co-existing SVHVs by computing the multiset:

Qy =
⋃

wx∈{Iq|cx<thc}

(wx ∩Gy) . (4)

In order to compute the above union an iterative proce-
dure is followed, at each step of which an inconsistency
coefficient cx is computed between the displacement
vectors of the current union’s VW-members, as mea-
sured by image Iq . Any wx producing cx ≥ thc is
omitted from the multiset as inconsistent with the rest
of the group. The resulting Qy multiset determines a
co-occurring SVHV group.

2) The TF–IDF term for each one of the SVHVs is
calculated through [35]:

Cy =

(
Qy − 1

O − 1

) ∑
wi∈Qy

idf(wi), (5)

with Qy being the cardinality of multiset Qy . Multisets
with Qy < O are going to offer zero contribution to
the overall similarity (through the above binomial co-
efficient term) due to insufficient number of consistent
VW matches. Note that the TF2 normalization term is
omitted from Eq. 5 since its effect will be incorporated
to our final step.

3) A similarity score is produced between Iq and Id using:

Cscr (Iq, Id) =
∑
Qy>o

Cy. (6)

4) Finally, the cosine similarity Csim (Iq, Id) is
obtained by normalizing the above score with

1tw is a time window preventing image matches that cannot be charac-
terized as loop closures since they were obtained immediately before Iq .

2The TF term of a VW wi corresponds to the number of this word’s
occurrences normalized by the total number of detected VWs.
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Fig. 3: Qualitative difference between SVHV-based and VW-
based image matching.

its L2-norm ‖V (Iq)‖‖V (Id)‖. Note that since
‖V (I)‖ =

√
V (I) · V (I), the L2-norm of any image

I can be efficiently computed by accumulating the
IDF terms of every self-occurring SVHV.

Although the above computations may seem computationally
exhaustive, one needs to realize that the majority of Qy

will result into empty sets. Therefore, they can be omitted
from the calculations since they offer zero contribution to
the final cosine similarity. Note that in Section IV further
implementation-related improvements are also discussed.

Through the means of the above procedure a similarity
matrix M (with M(q, d) = Csim (Iq, Id)) can be incremen-
tally formulated while the trajectory escalates. As it can be
seen in Fig. 3a, the structure of a fully constructed SVHV-
based similarity matrix is more robust than a simple VW-
based one (Fig. 3b), due to the additional information of the
overall scene’s structure.

D. Temporal Consistency Filter

Even though our approach reduces the possible false
positive loop closing matches that differ in terms of ge-
ometry, it can also result into false negative cases. As in
any BoVW-based approach, there is always the possibility
of two images, actually corresponding to the same scene, to
produce different VWs due to dynamic changes (e.g. moving
objects), aliasing effects, noise, etc. Thus, scores between
temporal consistent sets of images are combined, advancing
the cases of similarity incoherences. Considering an instance
of: a highly similar pair Iq−1–Id−1, a pair Iq–Id of small
similarity and a highly similar Iq+1–Id+1, our objective is
to characterize the Iq–Id pair as a loop closuring one, by
considering that the set is temporally consistent. Instead of
simply accumulating the similarities between close-in-time
matches [10], a single convolutional filtering kernel K of
size h is applied over the entries of similarity matrix M :

K =


κ1,1 κ1,2 ... κ1,h
κ2,1 κ2,2

...
. . .

κh,1 κh,h

 . (7)

In our previous work [40], a similar filtering technique was
applied in order to advance sequence-based similarity scores.

In this case though, the consistency filtering refers to single
instances, thus a bigger kernel size is preferable.

Avoiding to manually selecting the κi,j values, a training
scheme based on cost function minimization is formulated.
Eventually, we aim to identify the values of K for which
the entries of matrix M̂ = M ∗ K (with ∗ denoting the
convolutional operation) would separate the loop-closing
from the non-loop-closing pairs with the most effective way,
when thresholded by a value κ0. With the above formulation
in mind, it is easy to describe our filtering approach as a
linear logistic regression classifier, with a hypothesis vector
of [κi,j ,−κ0], operating on the similarity entries of matrix
M . Through the means of a generic set of training images
that contains a sufficient number of loop closure events,
together with their corresponding ground truth, the coeffi-
cients of this linear classifier can be evaluated using gradient
descent. The selection of logistic regression is justified due
to its high tolerance when provided with unbalanced training
samples. This effect can only be accounted when the training
and testing data contain approximately the same amount
of loop-closing and non-loop-closing events [41], [42], as
to be considered during its learning phase (Section V-A.2).
Finally, in order to identify the kernel size h, a series of
cross-validation tests are carried out, comparing the achieved
performance between different sized convolutional filters.

During the on-line algorithm’s execution, kernel K is
applied to the similarity sub-matrices m –centered around
the corresponding (q, d) entry of M– and produce a filtered
similarity metric M̂ (q, d). Subsequently, a loop closure event
is identified in the cases where M̂ (q, d)>κ0. Here, we need
to highlight that the overall M̂ matrix is not required to be
fully formulated nor of known size since the operations are
performed specifically over a small window of h recently
acquired input frames.

IV. MOBILE DEVICE IMPLEMENTATION

Aiming to provide a fully integrated system, a C++ based
version of the proposed algorithm was developed capable
of running in real-time on a mobile device. To achieve
this, a series of computational improvements was performed
referring to both methodical and parallelization techniques.

With the view to avoid the computationally expensive
nearest-neighbor descriptors’ search between consecutively
acquired images the direct indexing approach [10] was
adopted. According to that, feature matches are achieved
by associating points with common parent nodes of the
vocabulary tree. Since this procedure may result in some
false-positive matches, we additionally assigned the subse-
quent hierarchical clustering to reject feature pairs presenting
inconsistent displacement with the majority of clusters [4].
In addition, an efficient voting scheme to calculate the cosine
similarities was also incorporated through the means of
inverse indexing [35]. This way, the Cy terms are only com-
puted between images that contain common VWs, further
reducing the filter’s K convolutional operations.

Finally, taking advantage of the ARM-NEON co-
processor, embedded into the majority of modern mobile



Fig. 4: Precision-Recall curves measuring the effect of thc
threshold on the training datasets.

Fig. 5: Precision-Recall curves measuring the effect of
SVHVs’ order O on the training datasets.

devices, we increased the computational frequency of many
procedures through parallelization. More specifically, we
implemented SIMD-based (Single Instruction on Multiple
Data) versions of the ORB feature detector and descriptor,
as well as the Hamming distance required for traversing the
vocabulary tree.

V. EXPERIMENTAL RESULTS

In this section an evaluation of the proposed SVHV-
based loop closure detection approach is presented and its
achieved performance is compared against other state-of-the-
art techniques. Throughout our experiments, we made use
of the Precision-Recall curves as a means of measuring the
recognition accuracy of each implementation. As described,
our algorithm is specifically designed for addressing the
loop closure detection task under a freely moving hand-
held mobile device. Thus, it can be applied to challenging
operational environments, in terms of viewpoint changes, and
of confined traversed distance due to memory limitations. A
variaty of publicly available datasets with the above charac-
teristics was chosen, namely Bicocca 2009-02-25b [9] (BC),
Malaga 2009 Parking 6L [43] (MG6L), New College [44]
(NC), City Centre [15] (CC), Lip6 Indoor [18] (L6I) and
Lip6 Outdoor [18] (L6O). The datasets were distinguished
into two sets, i.e. training and testing. The training set
contains the first two datasets and it was used for learning the
parameters introduced by our method, while the testing one
contains the rest and it is considered to contain evaluation
cases for measuring the method’s overall performance.

A. System Evaluation

1) SVHV Formulation: We start by evaluating the effect
of thc threshold to the overall system’s performance. To that
end, a series of experiments was conducted using our training
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Fig. 6: Temporal consistency filter training results.

datasets. In general, higher values for this threshold would
result in clusters with bigger VW groups and consequently
SVHVs of higher order, while lower values would produce
the opposite effect. We selected a series of thc values
and produced the corresponding Precision-Recall curves by
eliminating kernel’s K effect and varying threshold k0. For
this experiment the most general, while still meaningful, case
of O = 2 was selected since the exact effect of SVHVs’ order
will be further evaluated. The most representative curves are
presented in Fig. 4. As it can be seen, the value of thc = 1.0
performs better for each one of the tested cases and thus,
adopted by the algorithm. The examples presented in Fig.
1 and Fig. 2c were obtained by using this threshold. At a
first glance, the dominance of thc = 1.0 over every testing
dataset may seem unintuitive. Though, one needs to consider
that key role here plays the production of a sufficient number
of clusters and not their exact semantic consistency. In other
words, possible groups of VWs that do not correspond to the
exact same object are not particularly harmful to the system
as long as enough SVHVs are created.

Next, we assess the effect of SVHVs’ order to the system’s
performance. Once more, several O values were selected and
evaluated through the means of Precision-Recall curves. Ker-
nel K was omitted from this experiment as well, while the
inconsistency threshold was fixed to thc = 1.0. By varying
the value of κ0, we obtained the results presented in Fig. 5 for
each one of our training datasets. As expected, higher order
O values resulted into more rigorous detections, restricting
every SVHV match to be supported by many displacement-
consistent VW-members. Due to the fact that BC dataset
contains many highly similar but different locations3, it can
be seen that the best performing O value is greater than
the case of MG6L. For the rest of this paper, the value of
O = 2 is adopted since it ensures a 100% Precision accuracy
for every tested case.

2) Temporal Consistency Filter: As mentioned, the final
step of the proposed approach refers to the application of a
consistency filtering over the obtained similarity metrics. To
learn the values of kernel K, as the hypothesis vector of a
logistic regression classifier, we made use all datasets in the

3As shown in Fig. 1, BC dataset refers to an indoors environment (library)
with many repeatable visual patterns (bookshelves, studying rooms, etc).



training set. Note that the corresponding loop closure ground
truth, required by the learning procedure, was provided by
the authors of [10]. Firstly, the similarity matrices M were
formulated and concatenated creating a generic sample. We
further distinguished this sample into two subsets, namely
training and cross-validation, containing 70% and 30% of
the data, respectively. The first one was used for estimating
the hypothesis vector for each evaluated kernel size h, while
the second for measuring their cross validation error. We
tested each h value into the interval [2, 20] and show the
evaluation results in Fig. 6a. As it can be seen, a kernel
size of h = 11 corresponds to the lowest classification
error and thus selected for our final parameterization. The
corresponding kernel K is shown in Fig. 6b. As a final note,
the used training set was considered to contain a representa-
tive ratio between loop-closing and non-loop-closing events.
Though, considering a specified operational environment, the
estimated hypothesis vector can be accordingly adjusted to
fit each particular sample distribution, as described in [41].

3) Overall Performance: We evaluate our system’s overall
performance both in terms of effectiveness and computa-
tional time. Using the parameterization described above, we
obtained the Precision-Recall curves presented in Fig. 7
by varying the value of k0 for each testing dataset. Here,
it is crucial to establish that within the scope of a loop
closure detection system, a false-positive match can lead
to catastrophic failure of the SLAM estimation and thus
the Precision accuracy must always be retained at 100%,
even with the cost of losing some of the Recall rates.
Nevertheless, the employed classification technique does not
share the same principle and estimates the value of k0 that
produces the smallest overall error between the two classes.
For this reason, the value of k0 = 1.25 is more suitable
for a loop closure detection system since it offers a 100%
Precision accuracy while still retaining the highest possible
Recall rates. The results regarding L6I and L6O datasets
are particularly descriptive since they both contain loop
closure events that occur under a camera’s 45° rotation in
the roll axis. Thus, each one of these datasets was further
distinguished into two subsets, one containing the rotated
and one the non-rotated loops, so as to assess the algorithm’s
robustness over possible viewpoint changes.

As a final test, we assessed our algorithm’s operational
frequency on the Google’s Project Tango developing tablet
[45]. Using the longest used datasets, i.e. 15K frames from
the NC, the algorithm was able to process each input frame
in 48.7ms on average, offering a real-time loop closure
detection system (in term of processing the input faster or
in equal time with the operational frequency of a key-frame
SLAM algorithm). Note that the minimum execution time
was measured at 30.4ms and the maximum at 57.1ms.

B. Comparative Results

The achieved Recall performance (for 100% Precision)
of our method is compared against other well-established
BoVW-based loop closure detection techniques. We restrict
the comparisons between approaches that offer real-time

⁰

⁰

⁰

⁰

Fig. 7: Precision-Recall curves measuring the algorithm’s
performance over every testing dataset.

TABLE I: Comparative results showing the achieved Recall
rates (%) for 100% Precision accuracy.

BC MG6L NC CC L6I L6O

Gálvez-López [10] 81.20 74.75 55.92 31.61 N/A N/A
Mur-Artal [21] 76.60 83.94 70.29 43.03 N/A N/A
FAB-MAP 2.0 [16] N/A 68.52 N/A 38.77 N/A N/A
Angeli [18] N/A N/A N/A N/A 36.86 23.59
Proposed 86.37 80.97 74.60 52.36 42.32 49.55

performances for a key-frame SLAM system (∼ 100-200ms
per frame [4], [5], [6]). Table I summarizes the results
for each used dataset, obtained straightforwardly from the
respective papers. As it can be observed, our technique
presents higher Recall rates for the most of the evaluated
cases, leading to a more holistic solution. This is owed to
the fact that other BoVW-based methods reject the geometry
information from the description and only assess the number
of commonly observed local features from a given scene.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a high-order VW based tech-
nique for identifying loop closure events on a freely moving
hand-held mobile device. The proposed method clusters VWs
producing similar optical flow measurements, as observed by
two consecutive viewing-points, offering rotation and scale
invariance to the description. Aiming to further improve
the detection performance, a temporal consistency filter
was applied incrementally over the similarity scores, the
coefficients of which were learned on an off-line training
step. Although wrapped into a complete pipeline, the main
contribution of the paper in hand, i.e. the SVHV-based
matching, can be efficiently adapted by the majority of
BoVW-based techniques and incorporate the environment’s
structure into the description.

The authors’ plans for future work include the extension
of the proposed SVHV-based description into an image se-
quence architecture as the one proposed in [40]. Additionally,
further research can be made in order to incorporate the
presented algorithm into a full SLAM system and take
advantage of the formulated SVHV groups for the visual
odometry estimation.
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